์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ

์†Œ๊ฐœ

Ultralytics COCO8์€ ์ž‘์ง€๋งŒ ๋‹ค์šฉ๋„๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌผ์ฒด ๊ฐ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ, COCO train 2017 ์„ธํŠธ์˜ ์ฒซ 8๊ฐœ ์ด๋ฏธ์ง€ ์ค‘ ํ›ˆ๋ จ์šฉ 4๊ฐœ์™€ ๊ฒ€์ฆ์šฉ 4๊ฐœ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๊ฐ์ฒด ๊ฐ์ง€ ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธํ•˜๊ณ  ๋””๋ฒ„๊น…ํ•˜๊ฑฐ๋‚˜ ์ƒˆ๋กœ์šด ๊ฐ์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์‹คํ—˜ํ•˜๋Š” ๋ฐ ์ด์ƒ์ ์ž…๋‹ˆ๋‹ค. 8๊ฐœ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์–ด ๊ด€๋ฆฌํ•˜๊ธฐ ์‰ฌ์šฐ๋ฉด์„œ๋„ ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ์˜ ์˜ค๋ฅ˜๋ฅผ ํ…Œ์ŠคํŠธํ•˜๊ณ  ๋” ํฐ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ํ›ˆ๋ จํ•˜๊ธฐ ์ „์— ๊ฑด์ „์„ฑ ๊ฒ€์‚ฌ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ์„ ๋งŒํผ ์ถฉ๋ถ„ํžˆ ๋‹ค์–‘ํ•ฉ๋‹ˆ๋‹ค.



Watch: Ultralytics COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ฐœ์š”

์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” Ultralytics HUB ๋ฐ YOLO11.

๋ฐ์ดํ„ฐ ์„ธํŠธ YAML

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ์„ ์ •์˜ํ•˜๋Š” ๋ฐ๋Š” YAML(๋˜ ๋‹ค๋ฅธ ๋งˆํฌ์—… ์–ธ์–ด) ํŒŒ์ผ์ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ๋กœ, ํด๋ž˜์Šค ๋ฐ ๊ธฐํƒ€ ๊ด€๋ จ ์ •๋ณด์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ์šฐ, ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ coco8.yaml ํŒŒ์ผ์€ ๋‹ค์Œ ์œ„์น˜์—์„œ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค. https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco8.yaml.

ultralytics/cfg/datasets/coco8.yaml

# Ultralytics YOLO ๐Ÿš€, AGPL-3.0 license
# COCO8 dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/detect/coco8/
# Example usage: yolo train data=coco8.yaml
# parent
# โ”œโ”€โ”€ ultralytics
# โ””โ”€โ”€ datasets
#     โ””โ”€โ”€ coco8  โ† downloads here (1 MB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8 # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush

# Download script/URL (optional)
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/coco8.zip

์‚ฌ์šฉ๋ฒ•

์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 640์ธ COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ 100๊ฐœ์˜ ์—ํฌํฌ์— ๋Œ€ํ•ด YOLO11n ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ๋‹ค์Œ ์ฝ”๋“œ ์กฐ๊ฐ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ ํ•™์Šต ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640

์ƒ˜ํ”Œ ์ด๋ฏธ์ง€ ๋ฐ ์ฃผ์„

๋‹ค์Œ์€ COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ด๋ฏธ์ง€์™€ ํ•ด๋‹น ์ฃผ์„์˜ ๋ช‡ ๊ฐ€์ง€ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค:

๋ฐ์ดํ„ฐ ์„ธํŠธ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€

  • ๋ชจ์ž์ดํฌ ์ด๋ฏธ์ง€: ์ด ์ด๋ฏธ์ง€๋Š” ๋ชจ์ž์ดํฌ๋œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ ํ›ˆ๋ จ ๋ฐฐ์น˜์˜ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค. ๋ชจ์ž์ดํฌ๋Š” ์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ๊ฐ ํ›ˆ๋ จ ๋ฐฐ์น˜ ๋‚ด์—์„œ ๋‹ค์–‘ํ•œ ๊ฐœ์ฒด์™€ ์žฅ๋ฉด์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด ํ›ˆ๋ จ ์ค‘์— ์‚ฌ์šฉ๋˜๋Š” ๊ธฐ์ˆ ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ํฌ๊ธฐ, ์ข…ํšก๋น„ ๋ฐ ์ปจํ…์ŠคํŠธ์— ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

์ด ์˜ˆ๋Š” COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ํฌํ•จ๋œ ์ด๋ฏธ์ง€์˜ ๋‹ค์–‘์„ฑ๊ณผ ๋ณต์žก์„ฑ, ๊ทธ๋ฆฌ๊ณ  ํ›ˆ๋ จ ๊ณผ์ •์—์„œ ๋ชจ์ž์ดํฌ ์‚ฌ์šฉ์˜ ์ด์ ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค.

์ธ์šฉ ๋ฐ ๊ฐ์‚ฌ

์—ฐ๊ตฌ ๋˜๋Š” ๊ฐœ๋ฐœ ์ž‘์—…์— COCO ๋ฐ์ดํ„ฐ์…‹์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋‹ค์Œ ๋…ผ๋ฌธ์„ ์ธ์šฉํ•ด ์ฃผ์„ธ์š”:

@misc{lin2015microsoft,
      title={Microsoft COCO: Common Objects in Context},
      author={Tsung-Yi Lin and Michael Maire and Serge Belongie and Lubomir Bourdev and Ross Girshick and James Hays and Pietro Perona and Deva Ramanan and C. Lawrence Zitnick and Piotr Dollรกr},
      year={2015},
      eprint={1405.0312},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

์ปดํ“จํ„ฐ ๋น„์ „ ์ปค๋ฎค๋‹ˆํ‹ฐ๋ฅผ ์œ„ํ•ด ์ด ๊ท€์ค‘ํ•œ ๋ฆฌ์†Œ์Šค๋ฅผ ๋งŒ๋“ค๊ณ  ์œ ์ง€ ๊ด€๋ฆฌํ•ด ์ฃผ์‹  COCO ์ปจ์†Œ์‹œ์—„์— ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ๋“œ๋ฆฝ๋‹ˆ๋‹ค. COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ ๋ฐ ์ œ์ž‘์ž์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ COCO ๋ฐ์ดํ„ฐ ์„ธํŠธ ์›น์‚ฌ์ดํŠธ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

Ultralytics COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์–ด๋–ค ์šฉ๋„๋กœ ์‚ฌ์šฉ๋˜๋‚˜์š”?

Ultralytics COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” COCO train 2017 ์„ธํŠธ์˜ ์ฒซ ๋ฒˆ์งธ 8๊ฐœ ์ด๋ฏธ์ง€๋กœ ๊ตฌ์„ฑ๋œ ์ž‘์ง€๋งŒ ๋‹ค์šฉ๋„ ๋ฌผ์ฒด ๊ฐ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ, ํ›ˆ๋ จ์šฉ ์ด๋ฏธ์ง€ 4๊ฐœ์™€ ๊ฒ€์ฆ์šฉ ์ด๋ฏธ์ง€ 4๊ฐœ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ๊ฐ์ฒด ๊ฐ์ง€ ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธ ๋ฐ ๋””๋ฒ„๊น…ํ•˜๊ณ  ์ƒˆ๋กœ์šด ๊ฐ์ง€ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์‹คํ—˜ํ•˜๊ธฐ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ž‘์€ ํฌ๊ธฐ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  COCO8์€ ๋Œ€๊ทœ๋ชจ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋ฐฐํฌํ•˜๊ธฐ ์ „์— ํ›ˆ๋ จ ํŒŒ์ดํ”„๋ผ์ธ์˜ ๊ฑด์ „์„ฑ ๊ฒ€์‚ฌ ์—ญํ• ์„ ํ•˜๊ธฐ์— ์ถฉ๋ถ„ํ•œ ๋‹ค์–‘์„ฑ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ž์„ธํ•œ ๋‚ด์šฉ์€ COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ YOLO11 ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•˜๋‚˜์š”?

COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ YOLO11 ๋ชจ๋ธ์„ ํ•™์Šตํ•˜๋ ค๋ฉด Python ๋˜๋Š” CLI ๋ช…๋ น์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‹œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=coco8.yaml model=yolo11n.pt epochs=100 imgsz=640

์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ ๊ต์œก ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

COCO8 ๊ต์œก์„ ๊ด€๋ฆฌํ•  ๋•Œ Ultralytics HUB๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š” ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

Ultralytics HUB๋Š” COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ Ultralytics YOLO11 ๋ชจ๋ธ์„ ํฌํ•จํ•˜์—ฌ YOLO ๋ชจ๋ธ์˜ ๊ต์œก ๋ฐ ๋ฐฐํฌ๋ฅผ ๊ฐ„์†Œํ™”ํ•˜๋„๋ก ์„ค๊ณ„๋œ ์˜ฌ์ธ์› ์›น ๋„๊ตฌ์ž…๋‹ˆ๋‹ค. ํด๋ผ์šฐ๋“œ ํŠธ๋ ˆ์ด๋‹, ์‹ค์‹œ๊ฐ„ ์ถ”์ , ์›ํ™œํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ด€๋ฆฌ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. HUB๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ํด๋ฆญ ํ•œ ๋ฒˆ์œผ๋กœ ํ›ˆ๋ จ์„ ์‹œ์ž‘ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ˆ˜๋™ ์„ค์ •์˜ ๋ณต์žก์„ฑ์„ ํ”ผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Ultralytics HUB์™€ ๊ทธ ์ด์ ์— ๋Œ€ํ•ด ์ž์„ธํžˆ ์•Œ์•„๋ณด์„ธ์š”.

COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋กœ ํ›ˆ๋ จํ•  ๋•Œ ๋ชจ์ž์ดํฌ ์ฆ๊ฐ•์„ ์‚ฌ์šฉํ•˜๋ฉด ์–ด๋–ค ์ด์ ์ด ์žˆ๋‚˜์š”?

COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ์‹œ์—ฐ๋œ ๋ชจ์ž์ดํฌ ์ฆ๊ฐ•์€ ํ›ˆ๋ จ ์ค‘์— ์—ฌ๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•˜๋‚˜์˜ ์ด๋ฏธ์ง€๋กœ ๊ฒฐํ•ฉํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ธฐ์ˆ ์€ ๊ฐ ํ›ˆ๋ จ ๋ฐฐ์น˜์—์„œ ๊ฐ์ฒด์™€ ์žฅ๋ฉด์˜ ๋‹ค์–‘์„ฑ์„ ์ฆ๊ฐ€์‹œ์ผœ ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ํฌ๊ธฐ, ์ข…ํšก๋น„ ๋ฐ ์ปจํ…์ŠคํŠธ์— ๊ฑธ์ณ ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๋ชจ๋ธ์˜ ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ๋”์šฑ ๊ฐ•๋ ฅํ•œ ๊ฐ์ฒด ๊ฐ์ง€ ๋ชจ๋ธ์ด ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค. ์ž์„ธํ•œ ๋‚ด์šฉ์€ ํ•™์Šต ๊ฐ€์ด๋“œ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ํ•™์Šต๋œ YOLO11 ๋ชจ๋ธ์„ ๊ฒ€์ฆํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

COCO8 ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•ด ํ•™์Šต๋œ YOLO11 ๋ชจ๋ธ์˜ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ๋Š” ๋ชจ๋ธ์˜ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ ๋ช…๋ น์„ ์‚ฌ์šฉํ•˜์—ฌ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. CLI ๋˜๋Š” Python ์Šคํฌ๋ฆฝํŠธ๋ฅผ ํ†ตํ•ด ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ ๋ชจ๋“œ๋ฅผ ํ˜ธ์ถœํ•˜์—ฌ ์ •ํ™•ํ•œ ๋ฉ”ํŠธ๋ฆญ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ž์„ธํ•œ ์ง€์นจ์€ ์œ ํšจ์„ฑ ๊ฒ€์‚ฌ ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

๐Ÿ“…1 ๋…„ ์ „ ์ƒ์„ฑ๋จ โœ๏ธ 1๊ฐœ์›” ์ „ ์—…๋ฐ์ดํŠธ๋จ

๋Œ“๊ธ€