์ฝ˜ํ…์ธ ๋กœ ๊ฑด๋„ˆ๋›ฐ๊ธฐ

์˜ค๋ธŒ์ ํŠธ365 ๋ฐ์ดํ„ฐ ์„ธํŠธ

Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์•ผ์ƒ์˜ ๋‹ค์–‘ํ•œ ๋ฌผ์ฒด์— ์ดˆ์ ์„ ๋งž์ถ˜ ๋ฌผ์ฒด ๊ฐ์ง€ ์—ฐ๊ตฌ๋ฅผ ์ด‰์ง„ํ•˜๊ธฐ ์œ„ํ•ด ๊ณ ์•ˆ๋œ ๋Œ€๊ทœ๋ชจ์˜ ๊ณ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ ์„ธํŠธ์ž…๋‹ˆ๋‹ค. Megvii ์—ฐ๊ตฌํŒ€์ด ๋งŒ๋“  ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” 365๊ฐœ์˜ ๋ฌผ์ฒด ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ํฌํ•จํ•˜๋Š” ํฌ๊ด„์ ์ธ ์ฃผ์„์ด ๋‹ฌ๋ฆฐ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค ์„ธํŠธ์™€ ํ•จ๊ป˜ ๊ด‘๋ฒ”์œ„ํ•œ ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

์ฃผ์š” ๊ธฐ๋Šฅ

  • ์˜ค๋ธŒ์ ํŠธ365์—๋Š” 2๋ฐฑ๋งŒ ๊ฐœ์˜ ์ด๋ฏธ์ง€์™€ 3์ฒœ๋งŒ ๊ฐœ ์ด์ƒ์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค๊ฐ€ ์žˆ๋Š” 365๊ฐœ์˜ ์˜ค๋ธŒ์ ํŠธ ์นดํ…Œ๊ณ ๋ฆฌ๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์˜ ๋‹ค์–‘ํ•œ ๊ฐ์ฒด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ๊ฐ์ฒด ๊ฐ์ง€ ์ž‘์—…์— ๋Œ€ํ•œ ํ’๋ถ€ํ•˜๊ณ  ๊นŒ๋‹ค๋กœ์šด ๋ฒค์น˜๋งˆํฌ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
  • ์ฃผ์„์—๋Š” ๊ฐ์ฒด์— ๋Œ€ํ•œ ๊ฒฝ๊ณ„ ์ƒ์ž๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ๊ฐ์ฒด ๊ฐ์ง€ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.
  • ์˜ค๋ธŒ์ ํŠธ365 ์‚ฌ์ „ ํ•™์Šต ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€๋„ท ์‚ฌ์ „ ํ•™์Šต ๋ชจ๋ธ๋ณด๋‹ค ํ›จ์”ฌ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ž‘์—…์—์„œ ๋” ๋‚˜์€ ์ผ๋ฐ˜ํ™”๋ฅผ ์ด๋Œ์–ด๋ƒ…๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์กฐ

Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ํ•ด๋‹น ์ฃผ์„์ด ํฌํ•จ๋œ ๋‹จ์ผ ์ด๋ฏธ์ง€ ์ง‘ํ•ฉ์œผ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค:

  • ์ด๋ฏธ์ง€: ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” 2๋ฐฑ๋งŒ ๊ฐœ์˜ ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์œผ๋ฉฐ, ๊ฐ ์ด๋ฏธ์ง€์—๋Š” 365๊ฐœ ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค์–‘ํ•œ ๊ฐœ์ฒด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  • ์ฃผ์„: ์ด๋ฏธ์ง€์— 3์ฒœ๋งŒ ๊ฐœ ์ด์ƒ์˜ ๊ฒฝ๊ณ„ ์ƒ์ž๋กœ ์ฃผ์„์„ ๋‹ฌ์•„ ๋ฌผ์ฒด ๊ฐ์ง€ ์ž‘์—…์„ ์œ„ํ•œ ์ข…ํ•ฉ์ ์ธ ์‹ค์ธก ์ •๋ณด๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

์• ํ”Œ๋ฆฌ์ผ€์ด์…˜

์˜ค๋ธŒ์ ํŠธ365 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋ฌผ์ฒด ๊ฐ์ง€ ์ž‘์—…์—์„œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๋ฐ ๋„๋ฆฌ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๋‹ค์–‘ํ•œ ๊ฐ์ฒด ๋ฒ”์ฃผ์™€ ๊ณ ํ’ˆ์งˆ ์ฃผ์„์€ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ์ž์™€ ์‹ค๋ฌด์ž์—๊ฒŒ ์œ ์šฉํ•œ ๋ฆฌ์†Œ์Šค์ž…๋‹ˆ๋‹ค.

๋ฐ์ดํ„ฐ ์„ธํŠธ YAML

๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์„ฑ์„ ์ •์˜ํ•˜๋Š” ๋ฐ๋Š” YAML(๋˜ ๋‹ค๋ฅธ ๋งˆํฌ์—… ์–ธ์–ด) ํŒŒ์ผ์ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์—๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ๋กœ, ํด๋ž˜์Šค ๋ฐ ๊ธฐํƒ€ ๊ด€๋ จ ์ •๋ณด์— ๋Œ€ํ•œ ์ •๋ณด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ๊ฒฝ์šฐ, ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ Objects365.yaml ํŒŒ์ผ์€ ๋‹ค์Œ ์œ„์น˜์—์„œ ์œ ์ง€๋ฉ๋‹ˆ๋‹ค. https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/Objects365.yaml.

ultralytics/cfg/datasets/Objects365.yaml

# Ultralytics YOLO ๐Ÿš€, AGPL-3.0 license
# Objects365 dataset https://www.objects365.org/ by Megvii
# Documentation: https://docs.ultralytics.com/datasets/detect/objects365/
# Example usage: yolo train data=Objects365.yaml
# parent
# โ”œโ”€โ”€ ultralytics
# โ””โ”€โ”€ datasets
#     โ””โ”€โ”€ Objects365  โ† downloads here (712 GB = 367G data + 345G zips)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Objects365 # dataset root dir
train: images/train # train images (relative to 'path') 1742289 images
val: images/val # val images (relative to 'path') 80000 images
test: # test images (optional)

# Classes
names:
  0: Person
  1: Sneakers
  2: Chair
  3: Other Shoes
  4: Hat
  5: Car
  6: Lamp
  7: Glasses
  8: Bottle
  9: Desk
  10: Cup
  11: Street Lights
  12: Cabinet/shelf
  13: Handbag/Satchel
  14: Bracelet
  15: Plate
  16: Picture/Frame
  17: Helmet
  18: Book
  19: Gloves
  20: Storage box
  21: Boat
  22: Leather Shoes
  23: Flower
  24: Bench
  25: Potted Plant
  26: Bowl/Basin
  27: Flag
  28: Pillow
  29: Boots
  30: Vase
  31: Microphone
  32: Necklace
  33: Ring
  34: SUV
  35: Wine Glass
  36: Belt
  37: Monitor/TV
  38: Backpack
  39: Umbrella
  40: Traffic Light
  41: Speaker
  42: Watch
  43: Tie
  44: Trash bin Can
  45: Slippers
  46: Bicycle
  47: Stool
  48: Barrel/bucket
  49: Van
  50: Couch
  51: Sandals
  52: Basket
  53: Drum
  54: Pen/Pencil
  55: Bus
  56: Wild Bird
  57: High Heels
  58: Motorcycle
  59: Guitar
  60: Carpet
  61: Cell Phone
  62: Bread
  63: Camera
  64: Canned
  65: Truck
  66: Traffic cone
  67: Cymbal
  68: Lifesaver
  69: Towel
  70: Stuffed Toy
  71: Candle
  72: Sailboat
  73: Laptop
  74: Awning
  75: Bed
  76: Faucet
  77: Tent
  78: Horse
  79: Mirror
  80: Power outlet
  81: Sink
  82: Apple
  83: Air Conditioner
  84: Knife
  85: Hockey Stick
  86: Paddle
  87: Pickup Truck
  88: Fork
  89: Traffic Sign
  90: Balloon
  91: Tripod
  92: Dog
  93: Spoon
  94: Clock
  95: Pot
  96: Cow
  97: Cake
  98: Dining Table
  99: Sheep
  100: Hanger
  101: Blackboard/Whiteboard
  102: Napkin
  103: Other Fish
  104: Orange/Tangerine
  105: Toiletry
  106: Keyboard
  107: Tomato
  108: Lantern
  109: Machinery Vehicle
  110: Fan
  111: Green Vegetables
  112: Banana
  113: Baseball Glove
  114: Airplane
  115: Mouse
  116: Train
  117: Pumpkin
  118: Soccer
  119: Skiboard
  120: Luggage
  121: Nightstand
  122: Tea pot
  123: Telephone
  124: Trolley
  125: Head Phone
  126: Sports Car
  127: Stop Sign
  128: Dessert
  129: Scooter
  130: Stroller
  131: Crane
  132: Remote
  133: Refrigerator
  134: Oven
  135: Lemon
  136: Duck
  137: Baseball Bat
  138: Surveillance Camera
  139: Cat
  140: Jug
  141: Broccoli
  142: Piano
  143: Pizza
  144: Elephant
  145: Skateboard
  146: Surfboard
  147: Gun
  148: Skating and Skiing shoes
  149: Gas stove
  150: Donut
  151: Bow Tie
  152: Carrot
  153: Toilet
  154: Kite
  155: Strawberry
  156: Other Balls
  157: Shovel
  158: Pepper
  159: Computer Box
  160: Toilet Paper
  161: Cleaning Products
  162: Chopsticks
  163: Microwave
  164: Pigeon
  165: Baseball
  166: Cutting/chopping Board
  167: Coffee Table
  168: Side Table
  169: Scissors
  170: Marker
  171: Pie
  172: Ladder
  173: Snowboard
  174: Cookies
  175: Radiator
  176: Fire Hydrant
  177: Basketball
  178: Zebra
  179: Grape
  180: Giraffe
  181: Potato
  182: Sausage
  183: Tricycle
  184: Violin
  185: Egg
  186: Fire Extinguisher
  187: Candy
  188: Fire Truck
  189: Billiards
  190: Converter
  191: Bathtub
  192: Wheelchair
  193: Golf Club
  194: Briefcase
  195: Cucumber
  196: Cigar/Cigarette
  197: Paint Brush
  198: Pear
  199: Heavy Truck
  200: Hamburger
  201: Extractor
  202: Extension Cord
  203: Tong
  204: Tennis Racket
  205: Folder
  206: American Football
  207: earphone
  208: Mask
  209: Kettle
  210: Tennis
  211: Ship
  212: Swing
  213: Coffee Machine
  214: Slide
  215: Carriage
  216: Onion
  217: Green beans
  218: Projector
  219: Frisbee
  220: Washing Machine/Drying Machine
  221: Chicken
  222: Printer
  223: Watermelon
  224: Saxophone
  225: Tissue
  226: Toothbrush
  227: Ice cream
  228: Hot-air balloon
  229: Cello
  230: French Fries
  231: Scale
  232: Trophy
  233: Cabbage
  234: Hot dog
  235: Blender
  236: Peach
  237: Rice
  238: Wallet/Purse
  239: Volleyball
  240: Deer
  241: Goose
  242: Tape
  243: Tablet
  244: Cosmetics
  245: Trumpet
  246: Pineapple
  247: Golf Ball
  248: Ambulance
  249: Parking meter
  250: Mango
  251: Key
  252: Hurdle
  253: Fishing Rod
  254: Medal
  255: Flute
  256: Brush
  257: Penguin
  258: Megaphone
  259: Corn
  260: Lettuce
  261: Garlic
  262: Swan
  263: Helicopter
  264: Green Onion
  265: Sandwich
  266: Nuts
  267: Speed Limit Sign
  268: Induction Cooker
  269: Broom
  270: Trombone
  271: Plum
  272: Rickshaw
  273: Goldfish
  274: Kiwi fruit
  275: Router/modem
  276: Poker Card
  277: Toaster
  278: Shrimp
  279: Sushi
  280: Cheese
  281: Notepaper
  282: Cherry
  283: Pliers
  284: CD
  285: Pasta
  286: Hammer
  287: Cue
  288: Avocado
  289: Hami melon
  290: Flask
  291: Mushroom
  292: Screwdriver
  293: Soap
  294: Recorder
  295: Bear
  296: Eggplant
  297: Board Eraser
  298: Coconut
  299: Tape Measure/Ruler
  300: Pig
  301: Showerhead
  302: Globe
  303: Chips
  304: Steak
  305: Crosswalk Sign
  306: Stapler
  307: Camel
  308: Formula 1
  309: Pomegranate
  310: Dishwasher
  311: Crab
  312: Hoverboard
  313: Meatball
  314: Rice Cooker
  315: Tuba
  316: Calculator
  317: Papaya
  318: Antelope
  319: Parrot
  320: Seal
  321: Butterfly
  322: Dumbbell
  323: Donkey
  324: Lion
  325: Urinal
  326: Dolphin
  327: Electric Drill
  328: Hair Dryer
  329: Egg tart
  330: Jellyfish
  331: Treadmill
  332: Lighter
  333: Grapefruit
  334: Game board
  335: Mop
  336: Radish
  337: Baozi
  338: Target
  339: French
  340: Spring Rolls
  341: Monkey
  342: Rabbit
  343: Pencil Case
  344: Yak
  345: Red Cabbage
  346: Binoculars
  347: Asparagus
  348: Barbell
  349: Scallop
  350: Noddles
  351: Comb
  352: Dumpling
  353: Oyster
  354: Table Tennis paddle
  355: Cosmetics Brush/Eyeliner Pencil
  356: Chainsaw
  357: Eraser
  358: Lobster
  359: Durian
  360: Okra
  361: Lipstick
  362: Cosmetics Mirror
  363: Curling
  364: Table Tennis

# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
  from tqdm import tqdm

  from ultralytics.utils.checks import check_requirements
  from ultralytics.utils.downloads import download
  from ultralytics.utils.ops import xyxy2xywhn

  import numpy as np
  from pathlib import Path

  check_requirements(('pycocotools>=2.0',))
  from pycocotools.coco import COCO

  # Make Directories
  dir = Path(yaml['path'])  # dataset root dir
  for p in 'images', 'labels':
      (dir / p).mkdir(parents=True, exist_ok=True)
      for q in 'train', 'val':
          (dir / p / q).mkdir(parents=True, exist_ok=True)

  # Train, Val Splits
  for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
      print(f"Processing {split} in {patches} patches ...")
      images, labels = dir / 'images' / split, dir / 'labels' / split

      # Download
      url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
      if split == 'train':
          download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir)  # annotations json
          download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, threads=8)
      elif split == 'val':
          download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir)  # annotations json
          download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, threads=8)
          download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, threads=8)

      # Move
      for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
          f.rename(images / f.name)  # move to /images/{split}

      # Labels
      coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
      names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
      for cid, cat in enumerate(names):
          catIds = coco.getCatIds(catNms=[cat])
          imgIds = coco.getImgIds(catIds=catIds)
          for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
              width, height = im["width"], im["height"]
              path = Path(im["file_name"])  # image filename
              try:
                  with open(labels / path.with_suffix('.txt').name, 'a') as file:
                      annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
                      for a in coco.loadAnns(annIds):
                          x, y, w, h = a['bbox']  # bounding box in xywh (xy top-left corner)
                          xyxy = np.array([x, y, x + w, y + h])[None]  # pixels(1,4)
                          x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0]  # normalized and clipped
                          file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
              except Exception as e:
                  print(e)

์‚ฌ์šฉ๋ฒ•

์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 640์ธ 100๊ฐœ์˜ ์—ํฌํฌ์— ๋Œ€ํ•ด ์˜ค๋ธŒ์ ํŠธ365 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ YOLO11n ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ๋‹ค์Œ ์ฝ”๋“œ ์กฐ๊ฐ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๋ชจ๋ธ ํ•™์Šต ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="Objects365.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=Objects365.yaml model=yolo11n.pt epochs=100 imgsz=640

์ƒ˜ํ”Œ ๋ฐ์ดํ„ฐ ๋ฐ ์ฃผ์„

Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ์—๋Š” 365๊ฐœ ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๊ฐ์ฒด๊ฐ€ ํฌํ•จ๋œ ๋‹ค์–‘ํ•œ ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€ ์„ธํŠธ๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์–ด ๊ฐ์ฒด ๊ฐ์ง€ ์ž‘์—…์— ํ’๋ถ€ํ•œ ์ปจํ…์ŠคํŠธ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์Œ์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ํฌํ•จ๋œ ์ด๋ฏธ์ง€์˜ ๋ช‡ ๊ฐ€์ง€ ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค:

๋ฐ์ดํ„ฐ ์„ธํŠธ ์ƒ˜ํ”Œ ์ด๋ฏธ์ง€

  • ์˜ค๋ธŒ์ ํŠธ365: ์ด ์ด๋ฏธ์ง€๋Š” ๊ฐ์ฒด์— ๊ฒฝ๊ณ„ ์ƒ์ž๋กœ ์ฃผ์„์ด ๋‹ฌ๋ฆฐ ๊ฐ์ฒด ๊ฐ์ง€์˜ ์˜ˆ๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์ด ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์ด ์ž‘์—…์„ ์œ„ํ•œ ๋ชจ๋ธ์„ ์‰ฝ๊ฒŒ ๊ฐœ๋ฐœํ•  ์ˆ˜ ์žˆ๋„๋ก ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

์ด ์˜ˆ๋Š” Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ํฌํ•จ๋œ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์„ฑ๊ณผ ๋ณต์žก์„ฑ์„ ๋ณด์—ฌ์ฃผ๋ฉฐ ์ปดํ“จํ„ฐ ๋น„์ „ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ์ •ํ™•ํ•œ ๋ฌผ์ฒด ๊ฐ์ง€์˜ ์ค‘์š”์„ฑ์„ ๊ฐ•์กฐํ•ฉ๋‹ˆ๋‹ค.

์ธ์šฉ ๋ฐ ๊ฐ์‚ฌ

์—ฐ๊ตฌ ๋˜๋Š” ๊ฐœ๋ฐœ ์ž‘์—…์— Objects365 ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋‹ค์Œ ๋…ผ๋ฌธ์„ ์ธ์šฉํ•ด ์ฃผ์„ธ์š”:

@inproceedings{shao2019objects365,
  title={Objects365: A Large-scale, High-quality Dataset for Object Detection},
  author={Shao, Shuai and Li, Zeming and Zhang, Tianyuan and Peng, Chao and Yu, Gang and Li, Jing and Zhang, Xiangyu and Sun, Jian},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={8425--8434},
  year={2019}
}

์ปดํ“จํ„ฐ ๋น„์ „ ์—ฐ๊ตฌ ์ปค๋ฎค๋‹ˆํ‹ฐ๋ฅผ ์œ„ํ•œ ๊ท€์ค‘ํ•œ ๋ฆฌ์†Œ์Šค์ธ Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋งŒ๋“ค๊ณ  ์œ ์ง€ ๊ด€๋ฆฌํ•œ ์—ฐ๊ตฌํŒ€์— ๊ฐ์‚ฌ์˜ ๋ง์”€์„ ์ „ํ•ฉ๋‹ˆ๋‹ค. Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ์ œ์ž‘์ž์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ ์›น์‚ฌ์ดํŠธ๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์ž์ฃผ ๋ฌป๋Š” ์งˆ๋ฌธ

์˜ค๋ธŒ์ ํŠธ365 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์–ด๋–ค ์šฉ๋„๋กœ ์‚ฌ์šฉ๋˜๋‚˜์š”?

Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ๋จธ์‹  ๋Ÿฌ๋‹๊ณผ ์ปดํ“จํ„ฐ ๋น„์ „์˜ ๋ฌผ์ฒด ๊ฐ์ง€ ์ž‘์—…์„ ์œ„ํ•ด ์„ค๊ณ„๋˜์—ˆ์Šต๋‹ˆ๋‹ค. 2๋ฐฑ๋งŒ ๊ฐœ์˜ ์ฃผ์„์ด ๋‹ฌ๋ฆฐ ์ด๋ฏธ์ง€์™€ 365๊ฐœ ์นดํ…Œ๊ณ ๋ฆฌ์— ๊ฑธ์ณ 3์ฒœ๋งŒ ๊ฐœ์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค๊ฐ€ ํฌํ•จ๋œ ๋Œ€๊ทœ๋ชจ ๊ณ ํ’ˆ์งˆ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ํ™œ์šฉํ•˜๋ฉด ๋ฌผ์ฒด ๊ฐ์ง€ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ๊ณผ ์ผ๋ฐ˜ํ™”๋ฅผ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์–ด ํ•ด๋‹น ๋ถ„์•ผ์˜ ์—ฐ๊ตฌ ๋ฐ ๊ฐœ๋ฐœ์— ๋งค์šฐ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค.

Objects365 ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์—์„œ YOLO11 ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒ ํ•ด์•ผ ํ•˜๋‚˜์š”?

์ด๋ฏธ์ง€ ํฌ๊ธฐ๊ฐ€ 640์ธ 100๊ฐœ์˜ ์—ํฌํฌ์— ๋Œ€ํ•œ Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ YOLO11n ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๋ ค๋ฉด ๋‹ค์Œ ์ง€์นจ์„ ๋”ฐ๋ฅด์„ธ์š”:

์—ด์ฐจ ์˜ˆ์‹œ

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data="Objects365.yaml", epochs=100, imgsz=640)
# Start training from a pretrained *.pt model
yolo detect train data=Objects365.yaml model=yolo11n.pt epochs=100 imgsz=640

์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์ธ์ˆ˜์˜ ์ „์ฒด ๋ชฉ๋ก์€ ๊ต์œก ํŽ˜์ด์ง€๋ฅผ ์ฐธ์กฐํ•˜์„ธ์š”.

์˜ค๋ธŒ์ ํŠธ ๊ฐ์ง€ ํ”„๋กœ์ ํŠธ์— ์˜ค๋ธŒ์ ํŠธ365 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•˜๋Š” ์ด์œ ๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”?

์˜ค๋ธŒ์ ํŠธ365 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” ์˜ค๋ธŒ์ ํŠธ ๊ฐ์ง€ ์ž‘์—…์— ๋ช‡ ๊ฐ€์ง€ ์ด์ ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค:

  1. ๋‹ค์–‘์„ฑ: 365๊ฐœ ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ์•„์šฐ๋ฅด๋Š” ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์˜ ์˜ค๋ธŒ์ ํŠธ๊ฐ€ ํฌํ•จ๋œ 200๋งŒ ๊ฐœ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.
  2. ๊ณ ํ’ˆ์งˆ ์ฃผ์„: 3,000๋งŒ ๊ฐœ๊ฐ€ ๋„˜๋Š” ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค๊ฐ€ ์ข…ํ•ฉ์ ์ธ ์‹ค์ธก ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.
  3. ์„ฑ๋Šฅ: ์˜ค๋ธŒ์ ํŠธ365์—์„œ ์‚ฌ์ „ ํ•™์Šต๋œ ๋ชจ๋ธ์€ ์ด๋ฏธ์ง€๋„ท๊ณผ ๊ฐ™์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์—์„œ ํ•™์Šต๋œ ๋ชจ๋ธ๋ณด๋‹ค ํ›จ์”ฌ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•˜์—ฌ ์ผ๋ฐ˜ํ™”๊ฐ€ ๋” ์ž˜ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค.

Objects365 ๋ฐ์ดํ„ฐ ์ง‘ํ•ฉ์˜ YAML ๊ตฌ์„ฑ ํŒŒ์ผ์€ ์–ด๋””์—์„œ ์ฐพ์„ ์ˆ˜ ์žˆ๋‚˜์š”?

Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ YAML ๊ตฌ์„ฑ ํŒŒ์ผ์€ Objects365.yaml์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํŒŒ์ผ์—๋Š” ๊ต์œก ํ™˜๊ฒฝ์„ ์„ค์ •ํ•˜๋Š” ๋ฐ ์ค‘์š”ํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ฒฝ๋กœ ๋ฐ ํด๋ž˜์Šค ๋ ˆ์ด๋ธ”๊ณผ ๊ฐ™์€ ํ•„์ˆ˜ ์ •๋ณด๊ฐ€ ํฌํ•จ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

์˜ค๋ธŒ์ ํŠธ365์˜ ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์กฐ๋Š” ์˜ค๋ธŒ์ ํŠธ ๊ฐ์ง€ ๋ชจ๋ธ๋ง์„ ์–ด๋–ป๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋‚˜์š”?

Objects365 ๋ฐ์ดํ„ฐ ์„ธํŠธ๋Š” 2๋ฐฑ๋งŒ ๊ฐœ์˜ ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€์™€ 3์ฒœ๋งŒ ๊ฐœ ์ด์ƒ์˜ ๋ฐ”์šด๋”ฉ ๋ฐ•์Šค์— ๋Œ€ํ•œ ํฌ๊ด„์ ์ธ ์ฃผ์„์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” ๋ฌผ์ฒด ๊ฐ์ง€ ๋ถ„์•ผ์—์„œ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ•๋ ฅํ•œ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ๋ณด์žฅํ•˜๋ฉฐ, ๋‹ค์–‘ํ•œ ๋ฌผ์ฒด์™€ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋‹ค์–‘์„ฑ๊ณผ ๋ฐฉ๋Œ€ํ•œ ์–‘์€ ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ณ  ์‹ค์ œ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์— ์ž˜ ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์„ธํŠธ ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ ๋ฐ์ดํ„ฐ ์„ธํŠธ YAML ์„น์…˜์„ ์ฐธ์กฐํ•˜์„ธ์š”.

๐Ÿ“…1 ๋…„ ์ „ ์ƒ์„ฑ๋จ โœ๏ธ 3 ๊ฐœ์›” ์ „ ์—…๋ฐ์ดํŠธ๋จ

๋Œ“๊ธ€